COMBINATORIAL RELATIONS OF POWERS

Eungchun Cho
Kentucky State University
Frankfort, KY, 40601, USA

Abstract: Formulas for weighted sums of various powers of complex numbers and identities involving powers and binomial coefficients generalizing the binomial identity are given.

AMS Subject Classification: 05A10, 05E15, 30E05
Key Words: power series, binomial theorem, Lagrange polynomial

1. Introduction

Evaluation of weighted sums of various powers of numbers is necessary in computational statistics and combinatorial geometry. Identities on the finite sums involving binomial coefficients are numerous and well known (see [1], [2]).

In this paper, we give identities of finite series that generalize the binomial identity $\sum_{i=0}^{n} (-1)^i \binom{n}{i} = 0$.

2. Identities

The following propositions give identities involving various powers of complex num-
Proposition 1. Let \(x_1, \ldots, x_n \in \mathbb{C} \) and \(x_i \neq x_j \) if \(i \neq j \). Then

\[
\sum_{i=1}^{n} \frac{x_i^k}{\prod_{j \neq i}(x_i - x_j)} = \begin{cases}
0 & \text{for } 0 \leq k \leq n-2 \\
1 & \text{for } k = n-1
\end{cases}
\]

Proof. Let \(P_i(x) = \prod_{j \neq i}(x - x_j) \) and \(\sum_{k=0}^{n-1} b_{ik} x^k \) its expansion. It follows \(b_{ik} = (-1)^{n-k-1} \sum_j x_j \prod_{a=1}^{n-k-1} x_{j_a} \), where the sum is taken over \(j_1 < j_2 < \cdots < j_{n-k-1} \) and \(j_\alpha \neq i \). For example, \(b_{i,n-1} = 1 \) and \(b_{i,0} = (-1)^{n-1} \prod_{j \neq i} x_j \). Thus the Lagrange polynomial, \(P(x) = \sum_{i=1}^{n} \frac{y_i}{P_i(x_i)} P_i(x) \) interpolating \((x_i, y_i)\), is expanded as:

\[
P(x) = \sum_{k=0}^{n-1} \left(\sum_{i=1}^{n} b_{ik} y_i \right) x^k
\]

If \(y_i = x_i^m \), then \(P(x) = x^m \) (by the uniqueness) for \(0 \leq m \leq n-1 \). Hence it follows

\[
\sum_{i=1}^{n} \frac{b_{ik} x_i^m}{\prod_{j \neq i}(x_i - x_j)} = \delta_{k,n-1}
\]

Substitution of \(b_{i,n-1} = 1 \) and \(k = n-1 \) into (1) gives

\[
\sum_{i=1}^{n} \frac{x_i^m}{\prod_{j \neq i}(x_i - x_j)} = \delta_{n-1,m} \quad \text{for } 0 \leq m \leq n-1. \quad \text{q.e.d.}
\]

Proposition 2. If \(x_1, \ldots, x_n \) are distinct nonzero complex numbers, then

\[
\sum_{i=1}^{n} \frac{x_i^k}{\prod_{j \neq i}(x_i - x_j)} = \begin{cases}
(-1)^{n-1} \prod_{j=1}^{n} x_j & \text{for } k = -1 \\
\sum_{i=1}^{n} x_i & \text{for } k = n
\end{cases}
\]

Proof. Substitution of \(k = 0 \) and \(b_{i0} = (-1)^{n-1} \prod_{j \neq i} x_j \) into (1) gives

\[
\sum_{i=1}^{n} (-1)^{n-1} \prod_{j \neq i} x_j = 1
\]

and division of both sides by \(\prod_{j=1}^{n} x_j \) gives

\[
\sum_{i=1}^{n} \frac{1}{x_i \prod_{j \neq i}(x_i - x_j)} = (-1)^{n-1} \sum_{i=1}^{n} \frac{1}{x_i}
\]

Similarly, substitution of \(k = n-2 \) and \(b_{i,n-2} = - \sum_{j \neq i} x_j \) into (1) yields
\[\sum_{i=1}^{n} x_i^{n-1} \left(-\sum_{j \neq i} x_j \right) = 0 \]

and replacing \(\sum_{j \neq i} x_j \) by \(\left(\sum_{j=1}^{n} x_j \right) - x_i \) gives

\[\sum_{i=1}^{n} \frac{x_i^n}{\prod_{j \neq i}(x_i - x_j)} = \sum_{i=1}^{n} x_i \quad \text{q.e.d.} \]

Proposition 3.

\[\sum_{i=0}^{n} (-1)^i \binom{n}{i} i^k = \begin{cases} 0 & \text{for } 1 \leq k \leq n-1 \\ (-1)^n n! & \text{for } k = n \\ (-1)^n \frac{n(n+1)!}{2} & \text{for } k = n+1 \end{cases} \]

Proof. Since \(\prod_{j \neq i}(i - j) = (-1)^{n-i} (i-1)!(n-i)! \) it follows from (1) that \(\sum_{i=0}^{n} \frac{(-1)^i i^k}{i!(n-i)!} = 0 \) for \(1 \leq k \leq n-1 \) and

\[\sum_{i=0}^{n} \frac{(-1)^i i^k}{i!(n-i)!} = \begin{cases} (-1)^n & \text{for } k = n \\ (-1)^n \frac{n(n+1)!}{2} & \text{for } k = n+1 \end{cases} \quad \text{q.e.d.} \]

Acknowledgments

Eungchun Cho’s work at the Department of Mathematics, Seoul National University was supported by The Korea Research Foundation and The Korean Federation of Science and Technology Societies Grant funded by Korea Government (MOEHRD, Basic Research Promotion Fund).

References

