NEARLY COUNTABLY COMPACT SPACES

Zuhier Altawallbeh\(^1\), Abedallah Al-Momany\(^2\)

\(^1\)Department of Mathematics
Tafila Technical University
Tafila 66110, JORDAN

\(^2\)Applied Science Department
Ajloun College
Al-Balqa Applied University
Ajloun, 26816, JORDAN

Abstract: New class of spaces is introduced in this paper as a generalization of countably compact spaces called nearly countably compact spaces. Some characterizations and results about this new class of spaces are also presented. We give a definition of more generalized kind of spaces and we call it nearly regular countably compact spaces. Also, we study the effect of some mappings on the nearly countably compact spaces.

AMS Subject Classification: 54B05, 54C10, 54D20, 54D99
Key Words: regular open/closed sets, semiregularization of spaces, nearly countably compact spaces, nearly regular countably compact spaces

1. Introduction

Different generalizations are made on spaces involving those covers with regular open sets as nearly compact spaces which introduced in 1969 by Singal and Asha [9] and nearly Lindeöf spaces defined as a generalization of nearly compact spaces by Balasubramanian in 1982 [1]. In this paper, we give an analogous definition of those spaces have been mentioned above. This new kind of space is a generalization of countably compact spaces called nearly countably compact spaces. Also, we present some characterizations of this new class of spaces in terms of semireg-
ularization topologies; in which we prove that a topological space \((X, \tau)\) is nearly countably compact if and only if \((X, \tau^*)\) is countably compact. Moreover, nearly regular countably compact spaces are defined as a generalization of nearly countably compact spaces. In such kind of spaces, we used the notion of regular cover presented in [2]. In the other hand, the effect of some kind of mappings is studied, such as \(R\)-maps and some others, and they preserve the nearly countably compact spaces and the image of nearly countably compact spaces is again nearly countably compact spaces under \(\alpha\)-open and almost continuous functions.

In this paper, a space \(X\) stands for a topological space \((X, \tau)\) with no separation axioms assumed unless mentioned. The interior and closure of a subset \(A\) in a space \(X\) are denoted by \(\text{Int}(A)\) and \(\text{Cl}(A)\) respectively. Recall that a subset \(A\) of a space \(X\) is called regular open if \(A = \text{Int}(\text{Cl}(A))\) and regular closed if \(A = \text{Cl}(\text{Int}(A))\). It is clear that every regular open set is an open set. The semiregularization topology of a space \(X\) is the topology whose base is the set of all regular open sets in the space \(X\) and denoted by \(\tau^*\). If \(\tau = \tau^*\) then \(X\) is said to be semiregular.

2. Nearly Countably Compact Spaces

In this section, we define nearly countably compact spaces and we provide an example of a nearly countably compact topological space but not countably compact. Also, we study some characterizations in terms of semiregularization topologies and some other results.

Definition 2.1. A topological space \(X\) is said to be nearly countably compact if for every countable open cover \(\{U_n : n \in \mathbb{N}\}\) of \(X\), there is a finite subfamily \(\{U_{n_i}\}_{i=1}^m\) where \(m \in \mathbb{N}\) such that

\[
X = \bigcup_{i=1}^m \text{Int}(\text{Cl}(U_{n_i}))
\]

Lemma 2.1. A topological space \(X\) is nearly countably compact if and only if every countable cover \(\{U_n : n \in \mathbb{N}\}\) of regular open sets of \(X\) has a finite subcover \(\{U_{n_i}\}_{i=1}^m\) of \(X\).

Proof. Let \(X\) be a nearly countably compact space and \(X = \bigcup_{n \in \mathbb{N}} U_n\), where \(U_n = \text{Int}(\text{Cl}(U_n))\) for all \(n \in \mathbb{N}\). Since \(X\) is nearly countably compact space, there is a finite subcover of \(X\), so \(X = \bigcup_{i=1}^m \text{Int}(\text{Cl}(U_{n_i})) = \bigcup_{i=1}^m U_{n_i}\).

Conversely, let \(X = \bigcup_{n \in \mathbb{N}} U_n\), where \(U_n\) is an open in \(X\) for all \(n \in \mathbb{N}\). We know that \(U_n \subseteq \text{Int}(\text{Cl}(U_n))\) for all \(n \in \mathbb{N}\), so \(\{\text{Int}(\text{Cl}(U_n)) : n \in \mathbb{N}\}\) is a countable open cover of \(X\). Hence, it has a countable subfamily \(\{\text{Int}(\text{Cl}(U_{n_i}))\}_{i=1}^m\) such that \(X = \bigcup_{i=1}^m \text{Int}(\text{Cl}(U_{n_i}))\). Thus, \(X\) is nearly countably compact.

\[
X = \bigcup_{i=1}^m \text{Int}(\text{Cl}(U_{n_i}))
\]

\[
\text{Int}(\text{Cl}(U_{n_i}))
\]
Since every regularly open set is open, we have the following corollary:

Corollary 2.1. Any countably compact space is nearly countably compact space.

The converse needs not be true in general as shown in the next example:

Example 1. Consider the cocompact topology on real numbers \((\mathbb{R}, \tau_{coc})\). This space is not countably compact. On the other hand, let \(\{U_n : n \in \mathbb{N}\}\) be a countable open cover of \((\mathbb{R}, \tau_{coc})\) and \(U_k \in \{U_n : n \in \mathbb{N}\}\) for any \(k \in \mathbb{N}\). Then \(\text{Cl}(U_k) = \mathbb{R}\), and \(\text{Int}(\text{Cl}(U_k)) = \mathbb{R}\), that means \(\text{Int}(\text{Cl}(U_k))\) covers \(\mathbb{R}\) so \(\{\text{Int}(\text{Cl}(U_k))\}\) is a finite subfamily of \(\{U_n : n \in \mathbb{N}\}\) that covers \(\mathbb{R}\). Therefore, \((\mathbb{R}, \tau_{coc})\) is nearly countably compact space.

The following lemma is easily can be proved.

Lemma 2.2. The regularly open sets of a topological space \((X, \iota)\) are the same as the regularly open sets of its semiregularization \((X, \iota^*)\).

Theorem 2.1. A topological space \((X, \tau)\) is nearly countably compact if and only if \((X, \tau^*)\) is nearly countably compact.

Proof. Assume that \((X, \tau)\) is nearly countably compact. Let \(U\) be a countable cover of regularly open sets of \((X, \iota^*)\). By using 2.2, we see that \(U\) is countable cover by regularly open sets in \((X, \iota)\) which has a finite subcover by the nearly countably compactness of \((X, \iota)\). Therefore, \((X, \iota^*)\) is nearly countably compact.

Conversely, suppose that \((X, \tau^*)\) is nearly countably compact space. Let \(U\) be a countable cover of regularly open sets of \((X, \iota)\). From 2.2, the collection \(U\) is countable cover by regularly open sets in \((X, \tau^*)\), so \(U\) has a finite subcover by the nearly countably compactness of \((X, \iota^*)\). Therefore, \((X, \iota)\) is nearly countably compact.

The following proposition gives a characterization of nearly countably compact spaces.

Theorem 2.2. A topological space \((X, \tau)\) is nearly countably compact if and only if every countable collection of regularly closed subsets of \(X\) satisfying the finite intersection property has a nonempty intersection.

Proof. Let \((X, \tau)\) be countably compact space and \(\{F_n\}_{n=1}^{\infty}\) be a countable collection of regularly closed subsets of \(X\) satisfying the finite intersection property.

Assume that \(\bigcap_{n=1}^{\infty} F_n = \emptyset\), so the collection of regularly open sets \(\{X \setminus F_n\}_{n=1}^{\infty}\) covers \(X\). Since \(X\) is nearly countably compact, we have \(X = \bigcup_{i=1}^{m} X \setminus F_{n_i}\) for some
\(m \in \mathbb{N}, \) so \(\bigcap_{i=1}^{m} F_{n_i} = \emptyset \) which contradicts our assumption of the finite intersection property. Therefore, \(\bigcap_{n=1}^{\infty} F_n \neq \emptyset. \)

Conversely, assume that every countable collection of regularly closed subsets of \(X \) satisfying the finite intersection property has nonempty intersection. Let \(X = \bigcup_{n=1}^{\infty} U_n \) where \(U_n = \text{Int}(\text{Cl}(U_n)) \) for all \(n = 1, 2, \ldots \). From the assumption, there is \(m \in \mathbb{N} \) such that \(\bigcap_{i=1}^{m} X \setminus U_{n_i} = \emptyset \) and so \(X = \bigcup_{i=1}^{m} U_{n_i}. \)

By lemma 2.1, we get \(X \) is a nearly countably compact space.

Now, we give a definition of nearly regular countably compact spaces as an analogous definition of nearly regular-Lindelöf spaces [3].

Theorem 2.3. Let \(X \) be a nearly countably compact space and \(A \) be a regular closed subset of \(X \). Then \(A \) is nearly countably compact relative to \(X \).

Proof. Let \(\{U_n : n \in \mathbb{N}\} \) be a regularly open cover of \(A \). Then

\[
\{U_n : n \in \mathbb{N}\} \bigcup \{X \setminus A\}
\]

is a regularly open cover of \(X \), so it has a finite subcover, say \(U_{n_1} \cup \ldots \cup U_{n_k} \cup (X \setminus A) \). Thus \(A = \bigcup_{i=1}^{k} U_{n_i} \). Thus, \(A \) is nearly countably compact space.

Definition 2.2. [2] An open cover \(\{U_{\alpha} : \alpha \in \Delta\} \) of a topological space \(X \) is called regular cover if, for every \(\alpha \in \Delta \), there exists a nonempty regular closed subset \(C_{\alpha} \) in \(X \) such that \(C_{\alpha} \subseteq U_{\alpha} \) and \(X = \bigcup_{\alpha \in \Delta} \text{Int}(\text{Cl}(C_{\alpha})). \)

Definition 2.3. A topological space \((X, \tau)\) is called nearly regular countably compact if every countable regular cover \(\{U_n\}_{n=1}^{\infty} \) of \(X \) has a finite subfamily \(\{U_{n_1}, U_{n_2}, \ldots, U_{n_m}\} \) such that \(X = \bigcup_{i=1}^{m} \text{Int}(\text{Cl}(U_{n_i})). \)

Theorem 2.4. A space \(X \) is nearly regular countably compact if and only if for every countable family \(\{C_n : n \in \mathbb{N}\} \) of closed subsets of \(X \) such that, for each \(n \in \mathbb{N} \), there exists an open set \(A_n \) such that \(C_n \subseteq A_n \) with \(\bigcap_{n \in \mathbb{N}} \text{Cl}(A_n) = \emptyset \), there exists a finite subfamily \(\{C_{n_1}, C_{n_2}, \ldots, C_{n_m}\} \) such that \(\bigcap_{k=1}^{m} C_{n_k} = \emptyset. \)

Proof. Let \(\{C_n : n \in \mathbb{N}\} \) be a countable family of regularly closed subsets of \(X \) such that, for each \(n \in \mathbb{N} \), there exists an open set \(A_n \) such that \(C_n \subseteq A_n \) and \(\bigcap_{n \in \mathbb{N}} \text{Cl}(A_n) = \emptyset \). Then \(X = \bigcup_{n \in \mathbb{N}} X \setminus (\text{Cl}(A_n)). \) Thus, we have that \(C_n \subseteq A_n \subseteq \)
Int(Cl(A_n)) ⊆ Cl(A_n) for every n ∈ N. So X/(Cl(A_n)) ⊆ X/(Int(Cl(A_n))) ⊆ X\A_n ⊆ X/C_n, for every n ∈ N. Thus X = \bigcup_{n ∈ N} X\C_n so \{X\C_n : n ∈ N\} is a countable cover of open sets in X such that, for every n ∈ N, we have X/(Int(Cl(A_n))) ∈ X/C_n and X = \bigcup_{n ∈ N} X\C_n = \bigcup_{n ∈ N} Int(X\C_n). Now, for each n ∈ N, X/(Int(Cl(A_n))) is regular closed set in X. Therefore; \{X\C_n : n ∈ N\} is a countable regular cover of X, so there exists a countable subfamily \{X\C_{n_1}, X\C_{n_2}, ..., X\C_{n_m}\} such that X = \bigcup_{k=1}^{m} Cl(Int(X\C_{n_k})) = \bigcup_{k=1}^{m} Cl(X\C_{n_k}) = \bigcup_{k=1}^{m} X\C_{n_k} = X\bigcap_{k=1}^{m} Int(C_{n_k}) and so \bigcap_{k=1}^{m} Int(C_{n_k}) = ∅.

Conversely, let \{U_n : n ∈ N\} be a countable regular cover of X, then for each n ∈ N, there exists a regularly closed subset C_n of X such that Int(C_n) ⊆ C_n ⊆ U_n and X = \bigcup_{n ∈ N} Int(C_n). See that the family \{X\U_n : n ∈ N\} is a countable family of closed sets such that for each n ∈ N, there is an open set X\C_n ⊇ X\U_n and

\[\bigcap_{n ∈ N} Cl(X\C_n) = \bigcap_{n ∈ N} X\C_{n_k} = X\bigcap_{n ∈ N} Int(C_{n_k}) = ∅. \]

By the assumption, we have \bigcap_{k=1}^{m} (X\U_{n_k}) = X\bigcap_{k=1}^{m} U_{n_k} = ∅. Thus, X = \bigcup_{k=1}^{m} U_{n_k}.

This proves that X is nearly regular countably compact.

3. Mappings on Nearly Countably Compact Spaces

Definition 3.1. A function f : (X, τ) → (Y, σ) is called

1. R-map [4] if f⁻¹(V) is regularly open in X for every regularly open set V in Y.

2. Almost continuous [10] if f⁻¹(V) is open in X for every regularly open set V in Y.

3. Almost α-open [7] f(U) ⊆ Int(Cl(Int(f(U)))) for every regularly open set U in X.

4. Weakly open [8] f(U) ⊆ Int(f(Cl(U))) for every open set U in X.

Theorem 3.1. Let f : (X, τ) → (Y, σ) be an R-map from X onto Y. If X is nearly countably compact then so is Y.
Proof. Let \(\{ V_n : n \in \mathbb{N} \} \) be a countable regularly open cover of \(Y \), then
\[
\{ f^{-1}(V_n) : n \in \mathbb{N} \}
\]

is a countable regularly open cover of \(X \). Since \(X \) is nearly countably compact, there exists a finite subfamily \(\{ f^{-1}(V_{n_1}), ..., f^{-1}(V_{n_k}) : i = 1, 2, ..., k \} \) such that \(X = \bigcup_{i=1}^{k} f^{-1}(V_{n_i}) \). Hence, \(Y = f(X) = f(\bigcup_{i=1}^{k} f^{-1}(V_{n_i})) = \bigcup_{i=1}^{k} f(f^{-1}(V_{n_i})) = \bigcup_{i=1}^{k} V_{n_i} \).

Therefore, \(Y \) is nearly countably compact.

Theorem 3.2. [5] Every almost continuous and almost \(\alpha \)-open function is an \(R \)-map.

Corollary 3.1. Let \(f : (X, \tau) \rightarrow (Y, \sigma) \) be an almost continuous and \(\alpha \)-open function from \(X \) onto \(Y \). If \(X \) is nearly countably compact then so is \(Y \).

Theorem 3.3. Let \(f : (X, \tau) \rightarrow (Y, \sigma) \) be an almost continuous and weakly open function from \(X \) onto \(Y \). If \(X \) is nearly countably compact then so is \(Y \).

Proof. Let \(\{ V_n : n \in \mathbb{N} \} \) be a countable regularly open cover of \(Y \). So,
\[
\{ f^{-1}(V_n) : n \in \mathbb{N} \}
\]

is an open cover of \(X \). Since \(f^{-1}(V_n) \subseteq \text{Int}(\text{Cl}(f^{-1}(V_n))) \) for all \(n \in \mathbb{N} \), we have that \(\{ \text{Int}(\text{Cl}(f^{-1}(V_n))) : n \in \mathbb{N} \} \) is a countable regularly open cover of \(X \) and so it has a countable subfamily \(\{ \text{Int}(\text{Cl}(f^{-1}(V_{n_1}))), ..., \text{Int}(\text{Cl}(f^{-1}(V_{n_k}))) : i = 1, ...k \} \) such that \(X = \bigcup_{i=1}^{k} \text{Int}(\text{Cl}(f^{-1}(V_{n_i}))) \). Since \(f \) is weakly open and \(\text{Int}(\text{Cl}(f^{-1}(V_{n_i}))) \) is an open set for all \(i = 1, ...k \), we have
\[
f(\text{Int}(\text{Cl}(f^{-1}(V_{n_i})))) \subseteq \text{Int}(f(\text{Cl}(\text{Int}(f^{-1}(V_{n_i}))))).
\]

Thus,
\[
Y = f(X) = f(\bigcup_{i=1}^{k} \text{Int}(\text{Cl}(f^{-1}(V_{n_i})))) = \bigcup_{i=1}^{k} f(\text{Int}(\text{Cl}(f^{-1}(V_{n_i})))) \subseteq \bigcup_{i=1}^{k} \text{Int}(f(\text{Cl}(\text{Int}(f^{-1}(V_{n_i}))))).
\]

\[
\subseteq \bigcup_{i=1}^{k} \text{Int}(f(\text{Cl}(f^{-1}(V_{n_i})))) \subseteq \bigcup_{i=1}^{k} \text{Int}(f(\text{Cl}(f^{-1}(V_{n_i})))) = \bigcup_{i=1}^{k} V_{n_i}. \]
So \(\{V_n\}_{i=1}^k \) is a finite subcover of \(Y \). Therefore, \(Y \) is nearly countably compact.

References

